Exercise 63

If a and b are positive numbers, find the maximum value of $f(x)=x^{a}(1-x)^{b}, 0 \leq x \leq 1$.

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[x^{a}(1-x)^{b}\right] \\
& =\left[\frac{d}{d x}\left(x^{a}\right)\right](1-x)^{b}+x^{a}\left[\frac{d}{d x}(1-x)^{b}\right] \\
& =\left(a x^{a-1}\right)(1-x)^{b}+x^{a}\left[b(1-x)^{b-1} \cdot \frac{d}{d x}(1-x)\right] \\
& =a x^{a-1}(1-x)^{b}+x^{a}\left[b(1-x)^{b-1} \cdot(-1)\right] \\
& =a x^{a-1}(1-x)^{b}-b x^{a}(1-x)^{b-1} \\
& =\frac{a x^{a}(1-x)^{b}}{x}-\frac{b x^{a}(1-x)^{b}}{1-x} \\
& =\left(\frac{a}{x}-\frac{b}{1-x}\right) x^{a}(1-x)^{b} \\
& =\left[\frac{a(1-x)-b x}{x(1-x)}\right] x^{a}(1-x)^{b} \\
& =\frac{[a(1-x)-b x] x^{a}(1-x)^{b}}{x(1-x)}
\end{aligned}
$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve each equation for x.

$$
\begin{aligned}
& x^{a}(1-x)^{b}[a(1-x)-b x]=0 \quad x(1-x)=0 \\
& x^{a}=0 \quad \text { or } \quad(1-x)^{b}=0 \quad \text { or } \quad a(1-x)-b x=0 \quad x=0 \quad \text { or } \quad 1-x=0 \\
& x=0 \quad \text { or } 1-x=0 \text { or } a-a x-b x=0 \quad x=0 \quad \text { or } \quad x=1 \\
& x=0 \quad \text { or } \quad x=1 \quad \text { or } a-(a+b) x=0 \quad x=0 \quad \text { or } \quad x=1 \\
& x=0 \quad \text { or } \quad x=1 \quad \text { or } x=\frac{a}{a+b} \quad x=0 \quad \text { or } \quad x=1
\end{aligned}
$$

$x=0$ and $x=1$ are within $[0,1]$, so evaluate f at these values. Additionally, since a and b are
both positive, $a /(a+b)$ is also within $[0,1]$.

$$
\begin{array}{rlrl}
f(0) & =0^{a}(1-0)^{b}=0 & & \text { (absolute minimum) } \\
f(1) & =1^{a}(1-1)^{b}=0 & & \text { (absolute minimum) } \\
f\left(\frac{a}{a+b}\right) & =\left(\frac{a}{a+b}\right)^{a}\left[1-\left(\frac{a}{a+b}\right)\right]^{b} & \\
& =\left(\frac{a}{a+b}\right)^{a}\left[\frac{(a+b)-a}{a+b}\right]^{b} & \\
& =\left(\frac{a}{a+b}\right)^{a}\left(\frac{b}{a+b}\right)^{b} & a^{a} b^{b} & \text { (absolute maximum) } \\
& =a+b)^{a+b} &
\end{array}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $0 \leq x \leq 1$.

